

Florida Solar Energy Center • November 1-4, 2005

Development of a Fluidic Biosensor for Detecting Hydrogen

Z. Hugh Fan University of Florida

Start Date = Nov. 01, 2003 Completion Date = Jul. 30, 2006

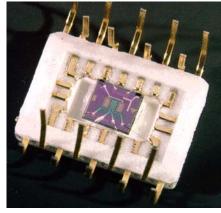
Florida Solar Energy Center • November 1-4, 2005

Research Goals and Objectives

- Goal:
 - To develop a novel, room temperature, hydrogen sensor
- Approach: Use biological or chemical assays to detect hydrogen, e.g.

$$H_2 + BV^{2+} \xrightarrow{hydrogenase} H^+ + BV^+$$

- Electron acceptor: benzyl viologen (BV)
- Catalyst: hydrogenase (an enzyme)
- Detection: electrochemical
- Expected benefits
 - Catalyzed reactions tend to be more efficient; sensitive and rapid detection is thus expected
 - Sensor selectivity likely enhanced by enzyme's specificity
 - Optimum performance is anticipated by implementing the assay in a miniaturized device
- Objectives:
 - Prove the concept; study the figure of merits; adapt to a miniaturized device



Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

- Current H₂ Sensors involve a palladium (Pd) alloy Schottky diode microfabricated on a Si substrate
 - Pd alloy is a H₂-sensitive metal
 - Other sensitive materials includes gallium nitride (GaN), nanowires, etc.
 - An elevated temperature (100 600 °C) for the sensing element is often required

by Hunter, NASA Glen

Relevance to NASA

- H₂ is used as the rocket propellant, and as the primary energy sources in space mission.
- A H₂ sensor is needed wherever it is produced, stored, and used due to its explosive nature.

Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule and Deliverables

- Budget
 - \$35K for fiscal year 2004, \$70K for year 2005, \$65K for year 2006
- Schedule
 - Nov. 1, 2003 to Jul. 30, 2006
 - Year 1: prove the concept
 - Year 2: investigate the figure of merits of the sensor
 - Year 3: adapt to a miniaturized format
- Deliverables
 - Quarterly reports
 - Device design, results, and publications

Florida Solar Energy Center • November 1-4, 2005

Anticipated Technology End Use

- After the technology is successfully developed, we expect possible usage in the following applications:
 - Hydrogen leakage monitoring in launching pad
 - Hydrogen leakage monitoring in H₂ storage tanks
 - Hydrogen leakage monitoring in H₂ ground transportation
 - Possible integration in the H₂ fuel cells

Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

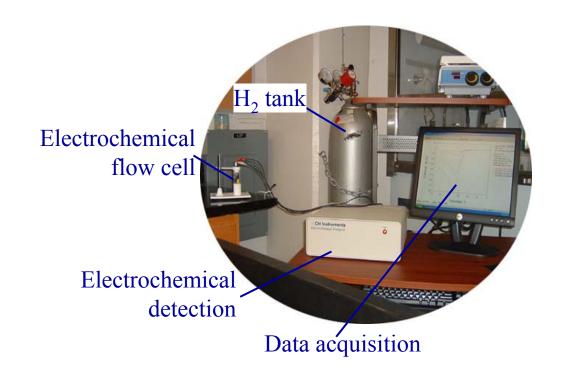
Accomplishments:

- Demonstrated the feasibility of H₂ detection using a biological assay
- Investigated enzyme reaction kinetics
- Established a calibration curve for quantification
- Fabricated microscale devices for next-generation H₂ sensors

Other Activities:

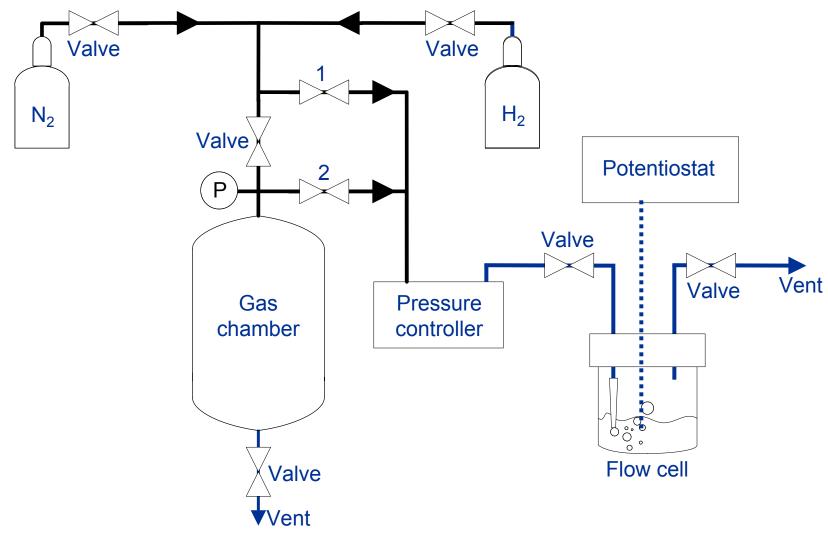
- Hosted a lab tour for Dr. Gary Hunter from Glen Research Center on Mar.
 15, 2005
- Hosted a lab tour for scientists from NASA and FL during the review meeting (May, 2005)
- Published a paper in Analytical Chemistry, Vol. 77, 4969-4975, 2005,
 entitled "Hydrogen Sensing by Enzyme-Catalyzed Electrochemical Detection".
- Filed one provisional patent application on the subject by UF (US patent office application No. 60/662,504)

Received one related grant from National Science Foundation (NSF)



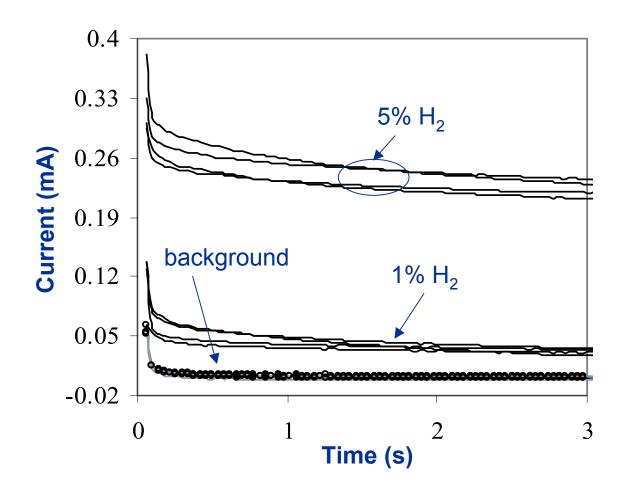
Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results (cont.)



Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results (cont.)

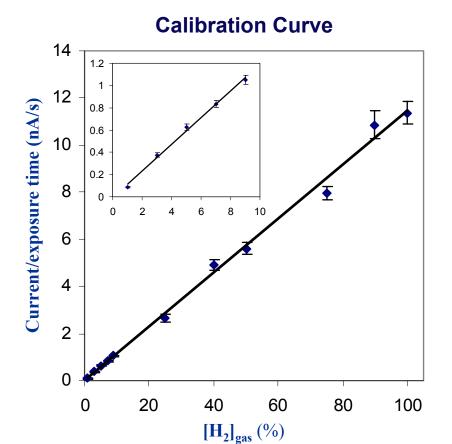


Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results (Cont.)

Before

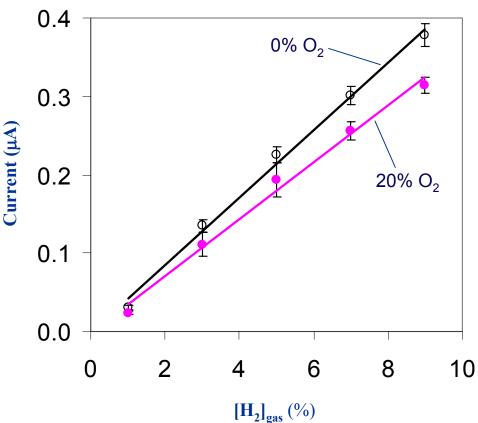
After H₂ exposure



Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results (Cont.)

- Demo'ed detection range :1 to 100%
- Current detection limit: 1%
- Target detection limit: 0.1%



Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results (Cont.)

Effects of O₂:

- ~19% reduction
- Linear calibration curve
- No enzyme inhibition
- Due to oxidation of BV⁺

 $H_2 + BV^{2+} \xrightarrow{hydrogenase} H^+ + BV^+$

Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results (cont.)

Reaction Kinetics

$$E + S \square \quad ES \longrightarrow E + P$$

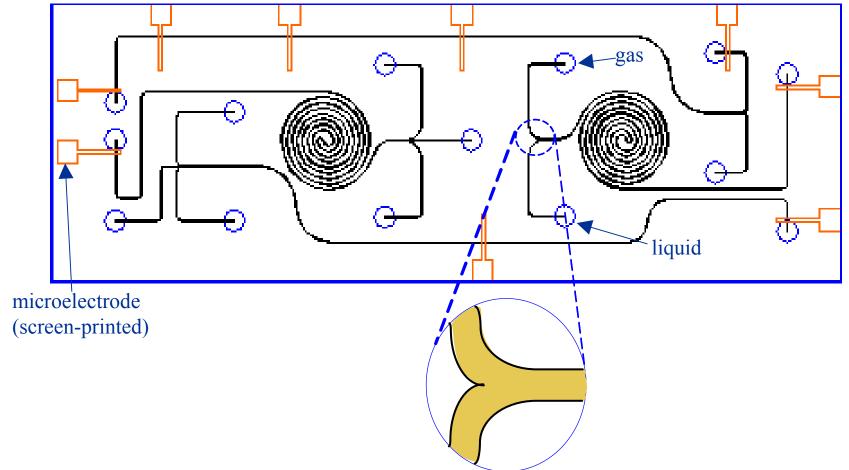
Michaelis-Menten equation

$$V = \frac{V_{\text{max}} \cdot [S]}{[S] + K_m}$$

Lineweaver-Burke plot

$$\frac{1}{V} = \frac{1}{V_{\text{max}}} + \frac{K_m}{V_{\text{max}}} \frac{1}{[S]}$$

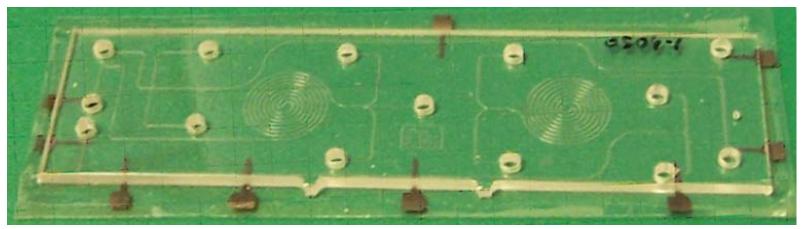
SH ¹	$V_{max} \ (\mu M/s)$	K_{m} (mM)	H ₂ -BV ⁺ activity ² (μmol H ₂ /min)	H ₂ -NAD ⁺ activity ³ (μmol H ₂ /min)
A	49.0	3.09	0.88	24.4
В	71.7	3.01	1.3	31.2
\mathbf{C}	61.2	3.26	1.0	32.6

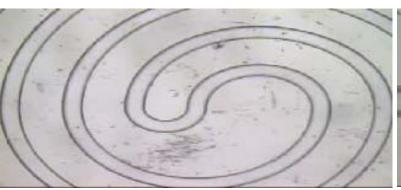


Florida Solar Energy Center • November 1-4, 2005

Future Plans

• To Implement the H₂ sensing mechanism in a miniaturized device

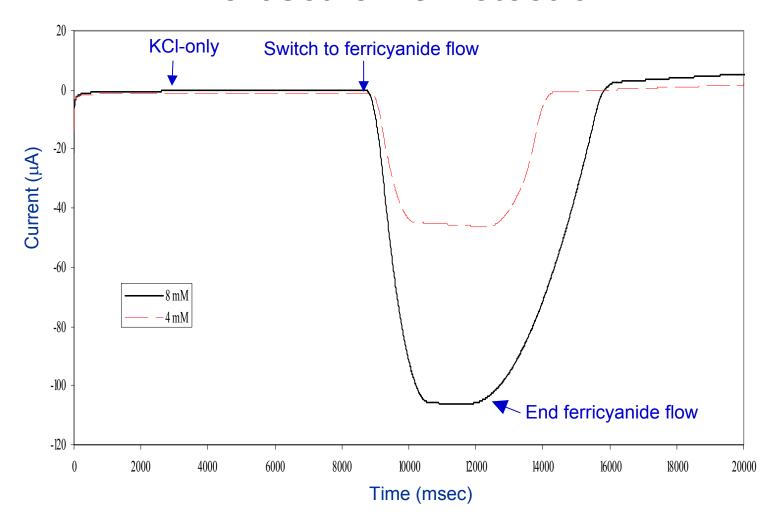




Florida Solar Energy Center • November 1-4, 2005

Future Plans (cont.)

A plastic, microfluidic device with integrated electrochemical detection



Florida Solar Energy Center • November 1-4, 2005

microscale EC Detection

Florida Solar Energy Center • November 1-4, 2005

Acknowledgement

- Students:
 - Brent Lutz
 - Zheng Xia
- Program Management:
 - Dr. Jenshan Lin (Dr. Mark Law)
 - UF, FSEC, and NASA
- Funding:
 - NASA
 - NSF